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1. Top Tagging at ATLAS

The top quark, at a mass of 170 GeV, is by

far the heaviest fundamental particle and

therefore a critical probe of many (Beyond)

Standard Model properties.

ATLAS produces top quarks by colliding

ultrarelativistic protons, providing a large

amount of energy. While top quarks are

produced, other irrelevant particles are also

part of the overall detector signal.

To learn anything about the top, it is critical

to accurately distinguish a top signal from

other backgrounds.

Fig. 3

An example of 

top decay 

energy 

deposits, scaled 

in color by 𝑃𝑡, in 

𝜙 − 𝜂 (spatial) 

space. Three 

distinct clusters 

are visible. 

2. Decay

Top quarks predominately decay into three

other quarks which then hadronize and form

clusters (called jets) of energy deposits in

the detector. Each individual energy deposit

is a constituent.

Hence the defining feature of a top quark is

three jets (Fig. 1) which add up to the top

mass.

As jets get boosted, they will become

collimated and overlap (Fig. 2), making

identification challenging.

3. Clustering & Jet Structure

Given low-level constituent data from the

detector (Fig. 3), we use clustering

algorithms to recursively combine

constituents based on a distance metric. We

can reconstruct jets from the bottom-up and

create a tree-like decay sequence that

would help indicate a top signal (or not).

The metric defines the clustering algorithm.

Clustering jets with a well-chosen algorithm

injects physically-motivated information

about the event and should be a valuable

feature for training a classifier, since top and

background sequences should be

significantly distinct. Of interest to us are the

𝑘𝑡 and anti − 𝑘𝑡 algorithms (Fig. 6).

With the clustering sequence as a feature,

the order in which we group and read

constituents of an event are significant now.

This has many parallels with natural

language processing.

4. Neural Network

We choose a neural network that can utilize

our clustering sequence information.

The Stack-Augmented Parser Interpreter

NN (SPINN) is a logical choice. It builds on

the LSTM structure and exactly suits our

need to introduce a clustering sequence to

our events. It combines events in a pre-

defined way according to the sequence our

clustering algorithm defines. It will learn how

to best combine constituents.

It uses two auxiliary data structures, the

stack and buffer, and uses shift-reduce

language to encode a clustering sequence.

An example with 4 constituents is in Fig. 5.

5. Performance

To test performance, we used 2M event

samples of Delphes-generated ATLAS data

in the 600-2500 GeV range with equal

numbers of top signal and dijet background

and a 5-5-90% test, validation, and training

split.

The same events were clustered with 𝑘𝑡
and anti − 𝑘𝑡 and trained separately.

Training was stopped after we noticed

overtraining. Rejection efficiencies are

plotted in Fig. 7.

Looking at Fig. 4, the 𝑘𝑡 clustering is

physically more realistic; it is surprising that

anti − 𝑘𝑡 seems to have better performance.

It should be noted that this method using

SPINN and anti − 𝑘𝑡 outperforms previous

analyses done by our group using DNN and

normal LSTM architectures [2].
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6. Conclusions & Outlook

We conclude with these observations:

• Clustering sequence has a significant

effect on performance.

• anti − 𝑘𝑡 starts off worse but eventually

performs better. Given that 𝑘𝑡 is the more

realistic choice, we are not sure why.
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Common top decay.

Fig. 2

Boosted 

and non-

boosted 

clusters. 

Fig. 5

The network architecture of SPINN 

unrolled across just two steps. A, B, 

C, D are jet constituents, and AB is 

a combined element. Gray arrows 

indicate an inactive transition, and 

colored boxes are layers. SPINN 

follows the sequence from our 

clustering algorithm and combines 

elements in that order using a 

sequence of shifts and reduces.
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Fig. 6

Distance metrics 

between constituents 𝑖
and 𝑗 given transverse 

momentum 𝑝, 

pseudorapidity 𝜂, and 

azimuthal angle 𝜙 of 

the constituent.

𝑎𝑘𝑡:

𝑘𝑡:

Fig. 4

Trees visualizing the 

clustering sequence of 
𝑘𝑡 (top) and anti − 𝑘𝑡
(bottom) algorithms for 

an example event. The 

horizontal axis is 

populated by 

constituents, and they 

are combined in a 

certain order to form the 

last element at the top.  

Fig. 7

Background rejection as a function of training epoch 

at 20% (left) and 50% (right) signal efficiency. 𝑘𝑡
(purple) and anti − 𝑘𝑡 (orange) are shown. 

Background rejection is the reciprocal of the false 

positive rate. 
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